
Cross-ISA Execution of SIMD
Regions for Improved

Performance

Yihan Pang, Robert Lyerly, Binoy Ravindran
System Software Research Group

Virginia Tech

Presenter
Presentation Notes
Thanks you for the introduction.
My name is Yihan Pang and I am a master student in the system software research group at Virginia Tech
Today, I will present our research on improving system performance through heterogeneous-ISA designs. Specifically, our research looks at cross-ISA execution of SIMD regions.

, a term which we define as a piece of code within a program that includes usage of SIMD instructions.

Time 30 sec

2

Embracing ISA Heterogeneity

• Existing commercial products offers NO
heterogeneity at ISA level

• Prior research shows that heterogeneity at
ISA level can provides performance gain
over a single-ISA heterogeneity

• Can we embrace ISA heterogeneity using
today’s servers?

- ONLY in emulated settings

Presenter
Presentation Notes
One of our motivation for this research comes from the increasing usage of heterogeneity in the computer architecture landscape. Recently, we have seen chip designers embracing heterogeneous architecture in their products, from earlier ARM’s big.LITTLE, Intel’s Xeon-Xeon PHI to newer ARM DYNAMIQ and Intel FOVEROS TECHNOLOGY. However current existing commercial product do not have heterogeneity at the ISA level. At best, some cores used in these designs supported extended instruction sets, but at their base, all cores share the same ISA. (with the exception of multi-processor system on chip)

Prior research shows that heterogeneity at ISA level can provides performance gain over single-ISA heterogeneity, however these were done in an emulated settings.

But before we start spending large engineering efforts to build such design, we want to make sure that leveraging ISA heterogeneity is a capable in today's servers

Around 1min 20-1min 30s

3

Explore Performance on ISA Different Servers

• Xeon Gold 5118 Server
– x86-64 ISA (2018)
– 12 core/24 physical threads

• Cavium ThunderX Server
– ARMv8 ISA (2014)
– 96 cores

• Benchmarks selected from 4
different HPC Suites

• Calculate single core, single
thread performance Our ThunderX cores are slower than its Xeon

counterparts but differ in degree of slowdown

Presenter
Presentation Notes
With this in mind, we first start searching for suitable servers that we can get our hands on, and we come across two servers with different ISAs, one x86-64 ISA server released in 2018 that has 12 core 2 way hyperthreading and one ARMv8 server released in 2014 that 96 single threaded cores. We then selected benchmarks from four different HPC suite and run and calculated single core, single thread performance.
Our ThunderX cores are slower than its Xeon counterparts in every benchmark tested but differ in degree of slowdown.
The slowdown is not surprising given that each individual Xeon core is clocked faster and ThunderX cores have different micro-architectural design goals, trading off single-core performance for massive parallelism .
and with the fact there is a 4x difference in physical threads between this two servers, we believe it is possible to have potential performance benefit of using ARM servers in benchmarks that experience smaller degree of slowdown.
To test this theory, we performed another study.

1min 30-1min45

0
0

200

400

600

800

1000

1200

1400

1600

Sy
st

em
 T

hr
ou

gh
pu

t

Hydro | BT/LU | EP/FT %

Xeon ThunderX

Is There One ISA Good For All?

No ISA is good for all workloads

ThunderX is better Xeon is better

4

Presenter
Presentation Notes
This time we selected five benchmarks from earlier test suites, and run them with a variety of different composition ratios on the same servers. We measured the system throughput, which we defined as the number of benchmarks completed in a testing period. (in this case 75 min).
This figure show the result of our new study. As you can see,
Neither the Xeon nor ThunderX servers has a clear advantage in all tested scenarios. ThundderX perform better when the workload is mainly composed of low-slowdown benchmarks (EP/FT).whereas Xeon servers have a higher throughput when there is an increasing number of relatively high-slowdown benchmarks (BT/LU/Hydro),
Thus, there is no ISA that is good for all workloads which shows us the potential promise of using heterogenous ISA servers for performance gain.
1min 10s

5

Re-examine Benchmark Performance

• Hydro and VPVTS:
– consist mainly of SIMD

instruction.
• Latest ARM and x86 servers have

very different SIMD support
• Our x86-64 server has SIMD width

of 512 (Intel AVX-512)
• Our ARMv8 server only has a

SIMD width of 128 (ARM-NEON)
• SIMD instructions gaining more

attention in various application
domains. (ML, CV, Cypto etc.)

SIMD + Heterogeneous-ISA servers
=

An Interesting platform

Presenter
Presentation Notes
No we know ISA heterogeneity can be potentially beneficial in real servers, we went back to re-examine these benchmarks. We inspected two highest slowdown benchmarks, we found both benchmarks contain large portion of single-instruction-multiple-data instructions. And our two ISA servers, both latest in the production chain ,have very different SIMD support, with x86-64 servers has a SIMD width of 512 and whereas ARM servers only has a width of 128.

Along with SIMD instructions gaining more attention from chip designers as a means to extract additional data parallelism in various application domains such as machine learning computer vision, crypto graphy, coupling together heterogeneous-ISA servers that have significant difference in microarchitecture and SIMD extension provides an interesting platform for running diverse workloads.

1min 30

Contribution
• Extended Popcorn Linux compiler/run-time framework* to

support a heterogeneous-ISA designs with cross-ISA SIMD
migration capability

• Analyzed the effects of co-executing SIMD and non-SIMD
workloads on a heterogeneous-ISA system to understand the
impact of ISA heterogeneity and SIMD/non-SIMD workload
composition on system throughput.

• Developed a migration aware scheduler to improve system
throughput.

*Breaking the Boundaries in Heterogeneous-ISA Datacenters, A. Barbalace, R. Lyerly, C. Jelesnianski, A. Carno, H. Chuang, V. Legout, and B.
Ravindran, ASPLOS’17

6

Presenter
Presentation Notes
In this paper, we made the following contribution

Design Outline

7

Outline: Enable basic SIMD
migration

Ensure SIMD migration
correctness

Optimize SIMD
migration

Leverage SIMD migration
capability

Presenter
Presentation Notes
Our Design effort to builds an heterogenous-ISA servers with cross-ISA capability then leveraging it for performance gains contains four steps. First, we want to enable basic SIMD migration, after simd migration is enabled we want to ensure that these simd migration are performed correctly. Then we want to optimize migration cost and last use this new SIMD migration ability for performance gains in heterogeneous ISA systems
Ensure the correctness of SIMD migration
Optimizing SIMD migration
Last, Leverage SIMD migration capability to explore ISA heterogeneity.

Definitions

SIMD Region:
A piece of code within a program that has SIMD instructions

- can vary in execution time
- a program can contain any number of SIMD regions
- nested SIMD regions are considered as a single SIMD region

SIMD Workload:
A set of applications in which each application has at least one SIMD region.

Non-SIMD Workload:
A set of applications that have NO SIMD region.

SIMD Intensive Program:
A program that spends more than 50% of its execution time in SIMD regions

cumulatively.

8

Presenter
Presentation Notes
Before we begin explaining details of our design, I want to clarify a few commonly used terms in our presentation.

Enable Basic SIMD Migration

• Insertion location selected based
migration costs

*A Unified Model of Pointwise Equivalence of Procedural Computations, David G. von Bank, Charles M. Shub and Robert W. Sebesta ACM Trans.
Program. Lang. Syst’1994

• Goal: Insert at least one migration
point inside each SIMD region

• Migration happens at
equivalence point*

• Function Boundary ∈
Equivalence Point

• Create migration point
through dummy function call

9

Presenter
Presentation Notes
The first part of our design is to enable basic SIMD migration.
The goal is to add at least one migration check side a SIMD region. In popcorn linux framework migration happen at equivalence point and function boundary are one of naturally occurring equivalence points and it will instrument every function boundaries with migration checks.
So our solution to this problem is manually create a equivalence point inside each SIMD region through dummy function calls and modify the compiler tool chain so that our modification get executed before the original framework’s instrumentation taken place. Now we know how to enable migration, now where should we insert it? The insertion location we determined is at the beginning of each loop, this is because generally at this point there is least amount data in stack and registers that to be migrated for the program to resume on the other ISA.

LLVM Compilers Intermediate Representation level.

Ensure Migration Correctness

• Each selected ISA can have
different SIMD width,
optimization configuration

• Number of element being
processed in a single SIMD loop
can vary

• Correctness is not fully
guaranteed after migration if NO
modification is done

• Unroll the loop code on both
ISAs to the least common
multiple of the SIMD element(s)
processed in respective loops

ISA A

Calculate 6 element

Index = 0

Calculate 2 element

Index += 2

Index = 2Index = 4

Index + 2< 6?

Migrate

ISA B

Calculate 4 element

Index += 4

2 incorrect calculations

10

Presenter
Presentation Notes
After inserting migration points, we must ensure that program executes correctly after(potential) migration. Because each ISA implements SIMD operation with varying widths, the number of loop iterations need for each SIMD region varies. Our framework needs to account for combining different number of loop iterations for x86 and ARM due to their different width.

Consider the example in Figure 4, in which one SIMD region is vectorized for ISA A and ISA B, whose SIMD widths vary by a factor of two. Suppose there are 1000 element need to be computed, thus, ISA A will take half as many iterations (250) as ISA B (500) to complete the task. This discrepancy in the number of elements calculated at each iteration is inefficient when migrating between different ISAs inside SIMD regions near the end of iterations. This because a single element calculation (inefficient usage of available SIMD instruction) needs to be performed if the remaining element is not large enough for a single SIMD loop iteration (calculating element 998-1000 can use SIMD instruction on ISA B but not on ISA A). There can also exist corner cases such as, the framework can try to migrate from ISA B to ISA A at the start of the last iteration on ISA B and exit on ISA A. In this case, the result will perform two unnecessary calculations at the end

To do so we unroll the loop as many times as the least common multiple of the both ISA’s simd width so that same number of calculations are done in a single loop iteration. The LCM is generated based on the final number of elements that are processed in each iteration after compiler optimization. Thus is compatible with any compiler optimization.

Optimize SIMD Migration Cost

Step 2: Optimization

Instrument timestamp
at entry/exit of SIMD
region and application

• We propose a two step profile-guided optimization approach
- Inspired by LLVM’s built-in Profile Guided Optimization(PGO)

Compile and Run
Output a output file
contains the timestamp of
each boundary

Step 1: Profiling

Determine desired
responsiveness

Merge smaller
SIMD regions

Instrument migration
based on determined
granularity

• Checking for migration incurs performance overhead

11

Presenter
Presentation Notes
SIMD operations are meant to speed up computation, and in most cases, each SIMD loop iteration executes relatively quickly. However, if the compiler blindly inserts migration points at the beginning of each SIMD loop iteration in the baseline approach, the program will suffer significant execution overhead. This overhead is mainly due to the additional system calls to check for a migration decision (i.e., whether or not to migrate). For SIMD-intensive programs with a large number of loop iterations that never actually migrate, naïvely executing system calls to check at every loop iteration can harm performance. Nonetheless, applications should be able to quickly respond to migration requests to efficiently leverage heterogeneous-ISA systems. In order for the program to quickly respond to migration requests as well as incur low instrumentation overhead when migrated , we propose a two step profile-guided optimization (PGO) approach, similar to LLVM’s built-in PGO [12, 56, 57], to guide the insertion of migration points.

Leverage SIMD Migration Capability

• We propose a SIMD-aware scheduler

• Central Scheduling Idea:
The speedup gained from executing an
application on the optimal ISA core
should outweigh the slowdown other
applications suffer from not running on
that core

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴 𝑋𝑋
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴 𝑌𝑌

> 1

• How to leverage this new SIMD
migration capability?

• Further instrumentation to our
framework so that each application
shall communicate to scheduler at:

-program entry/exit
-after program migration

• Scheduler uses slowdown information
gathered from profiling and server
usage to make additional scheduling
decisions

12

• To reduce complexity, we
categorize all applications into three
slowdown groups: high, medium
and low

Presenter
Presentation Notes
Compiler-level infrastructural support for cross-ISA execution migration within SIMD regions allows us to explore the possibilities of leveraging ISA affinity [85] to increase system throughput. This, however, requires a SIMD-aware scheduler – i.e., one that can decide when to migrate an application with SIMD regions from one ISA to another to increase the overall throughput. We propose a scheduling policy to achieve this goal. Our policy assumes that the final slowdown (taking into considerations all factors, such as clock speed and micro-architectural differences), for each application on each different platform is known through profiling in our two-step PGO approach.1 Our policy is centered around the idea that the speedup gained from executing an application on the optimal ISA core should outweigh the slowdown other applications suffer from not running on that core

The application communicates its slowdown information to the scheduler upon arrival, which then determines its slowdown group. The scheduler tracks applications in both servers and makes migration decisions whenever the migration callback is triggered. The scheduler runs on one of the server cores (ThunderX in our experimental setup due to having more cores).

Experimental Setup & Methodology

13

• Server Configurations:
Het-dynamic (our design w/ instrumentation)
Het-static
x86-static (baseline w/o instrumentation)
ARM-static

• Experiment Length:
75 min per run
• Evaluation parameter:
of benchmark completed

• Workload Generation:
Mimic dynamic workload scenario
- Predefined SIMD/non-SIMD

benchmark composition
- In first iteration, assigns benchmark

based on affinity if possible until all
core are occupied

- Random assign benchmark from the
remaining workload

- Regenerate workload with same ratio if
workload is empty

Presenter
Presentation Notes
We considered four server configurations for comparison: (1) a homogeneous system composed of two Xeon servers, called “x86-static”; (2) a homogeneous system composed of two ThunderX servers, called “ARM-static”; (3) a heterogeneous system composed of one ThunderX server and one Xeon server, called “het-static”, wherein applications are statically pinned to the next available core with the highest ISA affinity and run to completion on that core (i.e., no migration); and (4) a heterogeneous system composed of one ThunderX server and one Xeon server with cross-ISA SIMD migration enabled using the aforementioned techniques, called “het-dynamic”. x86-static, ARM-static, and het-static serve as a baseline to evaluate the effectiveness of het-dynamic and do not migrate applications between servers.

For het-dynamic, the benchmarks are compiled with the migration instrumentation described in Section 3. For the baseline configurations, the benchmarks are compiled without any instrumentation to avoid unnecessary overhead and to ensure a fair comparison (applications do not migrate in these cases).

We profiled the SIMD benchmarks and instrumented the SIMD regions to check for migration once every second.

Our evaluation workload is generated by a script that starts a workload batch with a predefined SIMD/non-SIMD ratio of benchmark composition. To ensure fairness, in the first iteration, the workload script assigns benchmarks based on affinities. Then when all cores are fully occupied, the script randomly assigns benchmarks remaining in the workload batch to the next available free core to best mimic a dynamic workload scenario. In a dynamic workload scenario, the incoming benchmarks can not be predicted but the overall ratio can be estimated. If a workload batch is finished, the script regenerates an identical batch from which to select. This process continues until the evaluation period ends. To ensure a fair comparison, we used the same random seed so that each configuration has the same benchmark selection outcome for every run. Each experiment is run for a duration of 75 minutes. The rationale behind this is that most of the benchmarks execute in about 3 to 5 minutes when running on the x86 CPU; a period of 75 minutes is large enough to mitigate the impact of noise

Result: Two Benchmark Scenario (1/8)

14

• Performance Gain in EP, K-means and FT. Best: ~36%
• Average 6.3% non-SIMD benchmarks migrated to ARM
• Het-dynamic outperforms het-statics

Presenter
Presentation Notes
We evaluate our proposed framework to understand the effectiveness of het-dynamic on improving system throughput on mixed non-SIMD/SIMD workloads. To this end, we conducted two sets of experiments. The first set considered workloads composed of two applications: one non-SIMD benchmark and one SIMD benchmark. The goal of this experiment is to determine the workloads that yield throughput gains for het-dynamic. By focusing on only two applications, we can carefully control individual benchmarks with different slowdown

Result: Multi-workload (1/8)

15

• Average performance gain of 14.6%. Best: ~26%
• Average 23.1% of total benchmarks migrated to ARM
• Average 24.7% of total benchmarks migrated back eventually

Presenter
Presentation Notes
Using the insights gained from these experiments, our second set of experiments considered a more realistic workload consisting of multiple non-SIMD and SIMD benchmarks. For easier comparison, we used the Hydro benchmark from the Livermoore Loops suite [61] as the designated SIMD benchmark for both sets of experiments

Conclusion

16

• Efficiently using ISA affinity and dynamically migrating applications to use ISA optimal
cores in heterogeneous-ISA systems can result in significant performance gains over
homogeneous systems.

"No one ISA/micro-architecture fits all workloads."

Presenter
Presentation Notes
In the end, The fact that our design allow two servers that are almost five years apart in production to outperform two-2018 released x86 servers is a strong validation of our results

17

Thank you.
Q & A

Result: Multi-workload (1/4)

18

• Performance gain in 4/6 test cases, Best: ~31.1%
• Average 28% of total benchmarks migrated to ARM
• Average 24.4 % of total benchmarks migrated back eventually

Presenter
Presentation Notes
May be show multi workload 1/8 will be better
	- more consistent ?
	- performance better across the board?

Discussion & Future Direction

19

Since
Het-dynamic >= Het-static in Xeon-ThunderX setup

Our design on newer machine (ThunderX2 and Ampere) can potentially yield even more
promising results.

Presenter
Presentation Notes
We believe hat our work only scratches the surface of heterogeneous-ISA space.
We scoped out optimizing energy costs largely due to the process node gap between two servers that we selected. Our ARM server is released almost 5 years prior to X86 server and the it does not implement many energy saving features such as low-power stats, clock gating etc which make it an energy inefficient cpu.
However, recently, two more new ARM servers released into market and we are able run some experiment. Due to the amount of engineering effort in porting the infrastructure on these platforms, we are unable to test our new design. However, we measured het-static configuration result on both these configurations as it does not involve cross-ISA migration and it shows significantly performance improvement. S

Optimize SIMD Migration Cost

12

	Cross-ISA Execution of SIMD Regions for Improved Performance
	Embracing ISA Heterogeneity
	Explore Performance on ISA Different Servers
	Is There One ISA Good For All?
	Re-examine Benchmark Performance
	Contribution
	Design Outline
	Definitions
	Enable Basic SIMD Migration
	Ensure Migration Correctness
	Optimize SIMD Migration Cost
	Leverage SIMD Migration Capability
	Experimental Setup & Methodology
	Result: Two Benchmark Scenario (1/8)
	Result: Multi-workload (1/8)
	Conclusion
	Thank you.�Q & A
	Result: Multi-workload (1/4)
	Discussion & Future Direction
	Optimize SIMD Migration Cost

